509 research outputs found

    Critical Review Of Quark Gluon Plasma Signals

    Get PDF
    Compelling evidence for a new form of matter has been claimed to be formed in Pb+Pb collisions at SPS. We critically review two suggested signatures for this new state of matter: First the suppression of the J/Ψ\Psi, which should be strongly suppressed in the QGP by two different mechanisms, the color-screening and the QCD-photoeffect. Secondly the measured particle, in particular strange hadronic, ratios might signal the freeze-out from a quark-gluon phase.Comment: 7 pages 6 figures, Contribution to the Proceedings of CRIS 2000, 3rd Catania Relativistic Ion Studies, Acicastello, Italy, May 22-26, 200

    Translocation of structured polynucleotides through nanopores

    Full text link
    We investigate theoretically the translocation of structured RNA/DNA molecules through narrow pores which allow single but not double strands to pass. The unzipping of basepaired regions within the molecules presents significant kinetic barriers for the translocation process. We show that this circumstance may be exploited to determine the full basepairing pattern of polynucleotides, including RNA pseudoknots. The crucial requirement is that the translocation dynamics (i.e., the length of the translocated molecular segment) needs to be recorded as a function of time with a spatial resolution of a few nucleotides. This could be achieved, for instance, by applying a mechanical driving force for translocation and recording force-extension curves (FEC's) with a device such as an atomic force microscope or optical tweezers. Our analysis suggests that with this added spatial resolution, nanopores could be transformed into a powerful experimental tool to study the folding of nucleic acids.Comment: 9 pages, 5 figure

    The end of population aging in high-income countries

    Get PDF
    Will the population of today’s high-income countries continue to age throughout the remainder of the century? We answer this question by combining two methodologies, Bayesian hierarchical probabilistic population forecasting and the use of prospective ages, which are chronological ages adjusted for changes in life expectancy. We distinguish two variants of measures of aging: those that depend on fixed chronological ages and those that use prospective ages. Conventional measures do not, for example, distinguish between 65-year-olds in 2000 and 65- year-olds in 2100. In making forecasts of population aging over long periods of time, ignoring changes in the characteristics of people can lead to misleading results. It is preferable to use measures based on prospective ages in which expected changes in life expectancy are taken into account. We present probabilistic forecasts of population aging that use conventional and prospective measures for high-income countries as a group. The probabilistic forecasts based on conventional measures of aging show that the probability that aging will continue throughout the century is essentially one. In contrast, the probabilistic forecasts based on prospective measures of population aging show that population aging will almost certainly come to end well before the end of the century. Using prospective measures of population aging, we show that aging in high-income countries is likely a transitory phenomenon

    Quasispecies evolution in general mean-field landscapes

    Full text link
    I consider a class of fitness landscapes, in which the fitness is a function of a finite number of phenotypic "traits", which are themselves linear functions of the genotype. I show that the stationary trait distribution in such a landscape can be explicitly evaluated in a suitably defined "thermodynamic limit", which is a combination of infinite-genome and strong selection limits. These considerations can be applied in particular to identify relevant features of the evolution of promoter binding sites, in spite of the shortness of the corresponding sequences.Comment: 6 pages, 2 figures, Europhysics Letters style (included) Finite-size scaling analysis sketched. To appear in Europhysics Letter

    Charmonium suppression from purely geometrical effects

    Full text link
    The extend to which geometrical effects contribute to the production and suppression of the J/ψJ/\psi and qqˉq\bar{q} minijet pairs in general is investigated for high energy heavy ion collisions at SPS, RHIC and LHC energies. For the energy range under investigation, the geometrical effects referred to are shadowing and anti-shadowing, respectively. Due to those effects, the parton distributions in nuclei deviate from the naive extrapolation from the free nucleon result; fAAfNf_{A}\neq A f_{N}. The strength of the shadowing/anti-shadowing effect increases with the mass number. The consequences of gluonic shadowing effects for the xFx_F distribution of J/ψJ/\psi's at s=20\sqrt s =20 GeV, s=200\sqrt s =200 GeV and s=6\sqrt s =6 TeV are calculated for some relevant combinations of nuclei, as well as the pTp_T distribution of minijets at midrapidity for Nf=4N_f=4 in the final state.Comment: corrected some typos, improved shadowing ratio

    Current Status of Quark Gluon Plasma Signals

    Get PDF
    Compelling evidence for the creation of a new form of matter has been claimed to be found in Pb+Pb collisions at SPS. We discuss the uniqueness of often proposed experimental signatures for quark matter formation in relativistic heavy ion collisions. It is demonstrated that so far none of the proposed signals like J\psi meson production/suppression, strangeness enhancement, dileptons, and directed flow unambigiously show that a phase of deconfined matter has been formed in SPS Pb+Pb collisions. We emphasize the need for systematic future measurements to search for simultaneous irregularities in the excitation functions of several observables in order to come close to pinning the properties of hot, dense QCD matter from data.Comment: 12 pages, 6 figures, Proceedings of the Symposium on Fundamental Issues in Elementary Matter In Honor and Memory of Michael Danos 241. WE-Heraeus-Seminar Bad Honnef, Germany, 25--29 September 2000. To appear in Heavy Ion Phy

    Inferring DNA sequences from mechanical unzipping: an ideal-case study

    Full text link
    We introduce and test a method to predict the sequence of DNA molecules from in silico unzipping experiments. The method is based on Bayesian inference and on the Viterbi decoding algorithm. The probability of misprediction decreases exponentially with the number of unzippings, with a decay rate depending on the applied force and the sequence content.Comment: Source as TeX file with ps figure

    DNA sequence from the unzipping force? : one mutation problem

    Get PDF
    The possibility of detecting mutations in a DNA from force measurements (as a first step towards sequence analysis) is discussed theoretically based on exact calculations. The force signal is associated with the domain wall separating the zipped from the unzipped regions. We propose a comparison method (``differential force microscope'') to detect mutations. Two lattice models are treated as specific examples.Comment: 11 pages, 4 figures. Revised version with minor changes. Paragraph with discussion on experiments added. Accepted for publication in J. Phys. A as a Letter to the Edito
    corecore